Abel-ergodic theorems for subsequences

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodic Theorems over Sparse Random Subsequences

We prove an L subsequence ergodic theorem for sequences chosen by independent random selector variables, thereby showing the existence of universally L-good sequences nearly as sparse as the set of squares. We extend this theorem to a more general setting of measure-preserving group actions. In addition, we use the same technique to prove an L almost everywhere convergence result for a modulate...

متن کامل

Weighted Ergodic Theorems Along Subsequences of Density Zero

We consider subsequence versions of weighted ergodic theorems, and show that for a wide class of subsequences along which a.e. convergence of Cesaro averages has been established, we also have a.e. convergence for the subsequence Cesaro weighted averages, when the weights are obtained from uniform sequences produced by a connected apparatus.

متن کامل

On the Mean Ergodic Theorem for Subsequences

With these assumptions we have T defined for every integer n as a 1-1, onto, bimeasurable transformation. Henceforth we shall assume that every set considered is measurable, i.e. an element of a. We shall say that P is invariant if P(A) =P(TA) for every set A, P is ergodic if P is invariant and if P(U^L_oo TA) = 1 for every set A for which P(A) > 0 , and finally P is strongly mixing if P is inv...

متن کامل

Ergodic Theorems

Every one of the important strong limit theorems that we have seen thus far – the strong law of large numbers, the martingale convergence theorem, and the ergodic theorem – has relied in a crucial way on a maximal inequality. This is no accident: it can in fact be shown that a maximal inequality is a necessary condition for an almost everywhere convergence theorem. We will refrain from carrying...

متن کامل

Ergodic Averages over Sparse Random Subsequences

We prove an L subsequence ergodic theorem for sequences chosen by independent random selector variables, thereby showing the existence of sparser universally L-good sequences than had been previously established. We extend this theorem to a more general setting of ergodic group actions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1973

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1973.47.233